Processing math: 100%

परिचय


गणितीय ब्लॉग "गणिताञ्जलि" पर आपका स्वागत है ! \ast\ast\ast\ast\ast प्रस्तुत वेबपृष्ठ गणित के विविध विषयों पर सुरुचिपूर्ण व सुग्राह्य रचनाएँ हिंदी में सविस्तार प्रकाशित करता है.\ast\ast\ast\ast\ast गणिताञ्जलि : शून्य (0) से अनंत (\infty) तक ! \ast\ast\ast\ast\ast इस वेबपृष्ठ पर उपलब्ध लेख मौलिक व प्रामाणिक हैं.

सोमवार, 3 जुलाई 2017

गणित में प्रेक्षण उपपत्ति (प्रमाण) क्यों नहीं हो सकती ?

गणित में प्रेक्षण के ही आधार पर किसी कथन को सत्य नहीं माना जा सकता है. प्रेक्षण सीमित होता है, अतः यह किसी कथन को सार्वत्रिक रूप से सत्य प्रमाणित करने में सक्षम नहीं भी हो सकता है. इसे हम एक उदाहरण के द्वारा समझाएँगे. 

एक बहुपद f(n) = n^2 + n + 41 पर विचार कीजिए. यदि आप n के 0 से लेकर 39 तक के मानों के लिए f(n) का मान परिकलित करें, तो आप पाएँगे कि ये सभी मान अभाज्य संख्याएँ हैं (नीचे के सारणी में देखें).

तो क्या इन प्रेक्षणों के आधार पर कहा जा सकता है n के किसी भी ऋणेतर मान के लिए f(n) का मान अभाज्य होता है. वास्तव में, ऐसा कहना असत्य होगा. इस कथन को ऑयलर (Euler) ने 1772 ईसवीं में असत्य प्रमाणित किया था. यदि आप उपरोक्त बहुपद का मान n = 40 के लिए परिकलित करें, तो आप पाएँगे कि
f(40) = 40^2 + 40 + 41 = 40(40 + 1) + 41 = 40(41) + 41= 41(40 + 1) = 41^2.
इस प्रकार हम देखते हैं कि यह मान अभाज्य नहीं है. 

***
 

1 टिप्पणी :

शीर्ष पर जाएँ