परिचय


गणितीय ब्लॉग "गणिताञ्जलि" पर आपका स्वागत है ! $\ast\ast\ast\ast\ast$ प्रस्तुत वेबपृष्ठ गणित के विविध विषयों पर सुरुचिपूर्ण व सुग्राह्य रचनाएँ हिंदी में सविस्तार प्रकाशित करता है.$\ast\ast\ast\ast\ast$ गणिताञ्जलि : शून्य $(0)$ से अनंत $(\infty)$ तक ! $\ast\ast\ast\ast\ast$ इस वेबपृष्ठ पर उपलब्ध लेख मौलिक व प्रामाणिक हैं.

नवीनतम प्रविष्टियाँ सीधे आपके ई-मेल इनबॉक्स में...नीचे अपना ई-मेल पता प्रविष्ट कर सत्यापित करें !

मंगलवार, 10 मई 2016

गणितज्ञ कैसे बनें ? तीसरी कड़ी : $ab =ba$ क्यों ?


"गणितज्ञ कैसे बनें ?" गणितीय आलेखों की एक श्रृंखला है, जिसके अंतर्गत विविध गणितीय विषयों पर ऐसे लेख प्रस्तुत किये जाते हैं, जो पाठकों को ज्ञात गणितीय तथ्यों, परिणामों और सूत्रों को स्वयं खोजने के लिए क्रमबद्ध तरीके से प्रेरित करते हैं और जिनसे उनके अंदर गणितीय शोध की स्वाभाविक प्रवृति जागृत होती है.

 
प्रारंभिक बीजगणित (elementary algebra) के पाठ्यक्रम में बीजीय व्यंजकों (algebraic expressions) से संबंधित समस्याओं को हल करते समय  हम सदैव $ab$ और $ba$ को समान मानते हैं. उदाहरण के लिए, हम तत्समक (identity) $(a + b)^2 = a^2 + 2ab + b^2$ को सिद्ध करते समय इस मान्यता का प्रयोग करते हैं कि $ab = ba$. इसे नीचे सपष्ट किया गया है :
\begin{align*}
(a+b)^2 &= (a+b)(a+b) \\
&= a(a+b)+ b(a+b)\\
&=a^2 + ab + ba + b^2\\
&=a^2 + ab + ab + b^2 ~~~~~~~~~~~~~~~~\text{[क्योंकि $ab =ba$]}\\
&=a^2 + 2ab + b^2
\end{align*}
शीर्ष पर जाएँ