परिचय


गणितीय ब्लॉग "गणिताञ्जलि" पर आपका स्वागत है ! $\ast\ast\ast\ast\ast$ प्रस्तुत वेबपृष्ठ गणित के विविध विषयों पर सुरुचिपूर्ण व सुग्राह्य रचनाएँ हिंदी में सविस्तार प्रकाशित करता है.$\ast\ast\ast\ast\ast$ गणिताञ्जलि : शून्य $(0)$ से अनंत $(\infty)$ तक ! $\ast\ast\ast\ast\ast$ इस वेबपृष्ठ पर उपलब्ध लेख मौलिक व प्रामाणिक हैं.

रविवार, 21 अगस्त 2016

रचनीय संख्याओं का विलक्षण संसार

प्राचीन ग्रीसवासी ज्यामितीय रचनाओं में विशेष रुचि रखते थे. वे विशेषकर वैसी रचनाओं में रुचि रखते थे, जिनकी रचनाएँ केवल पैमाने (जिसपर केवल इकाई दूरी अंशांकित हों) और परकार की सहयता से किया जा सके. उन्हें समबाहु त्रिभुज, वर्ग, समपंचभुज, समषट्भुज इत्यादि की रचनाओं का ज्ञान था. उन्हें किसी कोण को समद्विभाजित करने का भी ज्ञान था. परन्तु, समसप्त्भुज की रचना कैसे की जाए या किसी कोण को कैसे समत्रिभाजित किया जाए - इनके बारे में उन्हें कोई जानकारी नहीं थी. इसके अतिरिक्त ज्यामितीय रचनाओं से संबंधित कुछ और भी समस्याएँ थीं, जो उनके लिए असाध्य थीं. जैसे कि किसी वृत्त के क्षेत्रफल के बराबर वर्ग की रचना या किसी घन के आयतन के दुगुने आयतन वाले घन की रचना, इत्यादि. इन समस्याओं ने गणितज्ञों को 2000 वर्षों तक उलझाए रखा. इन समस्याओं का समाधान 19वीं शताब्दी में संभव हो सका, जब इन ज्यामितीय समस्याओं को बीजगणितीय समस्याओं के रूप में परिवर्तित किया गया. वास्तव में उपरोक्त समस्याओं की रचनाएँ संभव नहीं है. अतः इन रचनाओं में मिली असफलता स्वाभाविक थी. बीजगणित के माध्यम से इन समस्याओं के अध्ययन के क्रम में दो नई प्रकार की संख्याओं का उद्गम हुआ - रचनीय संख्याएँ और अरचनीय संख्याएँ. प्रस्तुत लेख में हम इन विषयों पर विस्तार से चर्चा करेंगे.
चित्र - 1: वास्तविक संख्याओं का वर्गीकरण
वास्तविक संख्याओं को उनके लक्षणों के आधार पर कई वर्गों में वर्गीकृत किया जा सकता है. उदाहरण के लिए, प्राकृत संख्याओं को विभाज्यता के आधार पर सम (even) और विषम (odd) संख्याओं में, गुणनखंड के आधार पर अभाज्य (prime) और भाज्य (composite) संख्याओं में, परिमेयता के आधार पर परिमेय (rational) और अपरिमेय (irrational) संख्याओं में वर्गीकृत किया जा सकता है.  आइए, हम वास्तविक संख्याओं के एक अन्य लक्षण पर विचार करते हैं. यह लक्षण है - रचनीयता. इस लक्षण के आधार पर हम वास्तविक संख्याओं को दो प्रकार की संख्याओं में वर्गीकृत करते हैं - रचनीय संख्याएँ (constructible numbers) और अरचनीय संख्याएँ  (non-constructible numbers). जैसा कि नाम से ही स्पष्ट है - रचनीय संख्या का अर्थ है - वैसी संख्या जिसकी रचना की जा सके. रचना से हमारा तात्पर्य है - वास्तविक संख्या रेखा (real number line) पर किसी संख्या का ज्यामितीय निरूपण. इन संख्याओं की रचना हेतु हम केवल दो ज्यामितीय उपकरणों - पैमाना (ruler) और परकार (compass) का प्रयोग करेंगे. इस पैमाने पर केवल इकाई दूरी (unit length) और इसके पूर्णांकीय दूरी अंशांकित होंगे (चित्र - 2 देखें). सैद्धांतिक रूप से हम इस पैमाने को अनंत लम्बाई वाला मान सकते हैं. इस प्रकार रचनीय संख्याओं को हम निम्न प्रकार परिभाषित कर सकते हैं:

रचनीय संख्याएँ वैसी वास्तविक संख्याएँ हैं, जिनका ज्यामितीय निरूपण संख्या रेखा पर केवल उपरोक्त वर्णित पैमाना और परकार की सहायता से किया जा सके. वैसी संख्याएँ जो रचनीय संख्याएँ नहीं हैं, अरचनीय संख्याएँ कहलाती हैं.

मंगलवार, 9 अगस्त 2016

क्या बिंदु अपरिभाषित है ?

ज्यामिति का आरंभ जिन तीन अवधारणाओं से होता है - वे हैं बिंदु, रेखा और समतल  की अवधारणाएँ. बिंदु क्या है ? बिंदु की क्या परिभाषा है ? इस प्रश्न का उत्तर प्रायः यह कहकर दिया जाता है कि बिंदु अपरिभाषित है. अर्थात, इसे परिभाषित नहीं किया जा सकता है. इसकी केवल कल्पना की जा सकती है या इसका केवल वर्णन किया जा सकता है. इसे क्यों नहीं परिभाषित किया जा सकता है ? - इस प्रश्न का उत्तर पाने से पहले हमें बिंदु का व्यावहारिक निरूपण समझना होगा.

गुरुवार, 4 अगस्त 2016

अभिगृहीत...प्रमेय...उपप्रमेय...प्रमेयिका...???

गणित के उच्च-स्तरीय पाठ्य पुस्तकों को खोलते ही हमारा सामना कुछ विशिष्ट शब्दावलियों : अभिगृहीत (Axiom), प्रमेय (Theorem), उपप्रमेय (Corollary), प्रमेयिका (Lemma), प्रतिज्ञप्ति (Proposition), अनुमान (Conjecture), उपपत्ति (proof), परिभाषा (Definition),  इत्यादि से हमारा सामना होता है. यहाँ तक कि सातवीं - आठवीं कक्षा के छात्रों को भी ज्यामिति की पुस्तक में इन शब्दावलियों का सामना करना पड़ता है. यहाँ हम इन शब्दावलियों को परिभाषित करेंगे और इनके प्रयोगों के विषय में बताएँगे.
शीर्ष पर जाएँ